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SYMBOLS

Pertinent symbols are reproduced here from Houck et al., 1977. The equations
and data in this reference were derived in the U.S. Customary Units to expedite
development of the flight vehicles by Sikorsky Aircraft Company.

A generalized area, ft
2

AjS total lateral cyclic input, deg

aOL principal lagging Fourier series coefficient, deg

an suggested force summation coefficients, ft

B number of blades

BiS total longitudinal cyclic input, deg

bn suggested moment summation coefficients, ft
2

BMR main rotor blade-tip loss factor

C operational constant, lb/ft
2

CDY blade-segment drag coefficient

CLY blade-segment lift coefficient

c main rotor blade chord, ft

d differential operator

e main rotor hinge offset from center of rotation, ft

el distance from hinge to start of blade, ft

F generalized aerodynamic blade force, lb

FP,FT,FR blade-segment forces - perpendicular, tangential, radial, lb

fP,fT, fR radial derivatives of Fp,FT,FR, lb/ft

FxI,FyI,FZI blade inertial-shear forces, rotating shaft axes, lb

FXT,FyT,FZT blade total-shear forces, rotating shaft axes, lb

h vehicle altitude, ft

LMR main rotor body axes rolling moment, ft-lb

M generalized blade aerodynamic moment, ft-lb

M4FA aerodynamic moment about flapping hinge, ft-lb

vi



MLA aerodynamic moment about lagging hinge, ft-lb

MLD lag damper moment, ft-lb

MMR main rotor body axes pitching moment, ft-lb

Mb blade first mass moment about hinge, slugs-ft

N total number of radial evaluations per blade

NMR main rotor body axes yawing moment, ft-lb

n blade index (n = 1,2,...,N)

Q total rotor torque, ft-lb

RMN total body axes rotor yaw moment, ft-lb

r radial distance from main rotor hub, ft

rA radius from main rotor hub to cuff, ft

rMR radius from hub to tip of main rotor blade, ft

rn discrete radial evaluation point, ft

rn(_) interior segment extremity, ft

rn(+) exterior segment extremity, ft

rT  effective blade tip for lifting purposes, ft

rx  generalized lower limit of integration, ft

ry generalized upper limit of integration, ft

S generalized linear distance, ft

Vp blade-segment perpendicular velocity, ft/sec

vR blade-segment radial velocity, ft/sec

vT blade-segment tangential velocity, ft/sec

vy total blade-segment velocity magnitude, ft/sec

XMR main rotor body axes longitudinal force, lb

YMR main rotor body axes lateral force, lb

Yn normalized radial evaluation point

ZMR main rotor body axes vertical force, lb

vii



TRANS blade function angle-of-attack map entry, rad

ay blade-segment angle of attack, rad

8 blade flapping angle, rad

AFp(TL)

AFR(TL)

superimposed aerodynamic force and moment terms accounting for tip
AFT(TL) loss by using the suggested interval definitions, ft and ft-lb

"MFA(TL)

AMLA(TL)

Arn  length of a blade segment, ft

Ayn Arn normalized by rMR

6 blade lagging angle, rad

6A blade-segment pitch angle, rad

eCUFF impressed main rotor collective pitch angle, deg

vehicle yaw angle, deg

y blade-segment flow skew angle, rad

p air density, slugs/ft
3

main rotor rotational velocity, rad/sec

hinge offset e normalized by rMR

hinge distance e' normalized by rMR

viii



ESTABLISHMENT OF A ROTOR MODEL BASIS

R. E. McFarland

Ames Research Center

Aeromechanics Laboratory
and

AVRADCOM Research and Technology Laboratories

I. SUMMARY

Rotating blade-element mathematical models for use in discrete, man-in-the-loop
rotorcraft simulation have considerable engineering value, but they are computation-
ally expensive. A comprehensive blade-element model of the RSRA rotor system is
examined here to provide accurate baseline data for the analysis of modifications to
the present model. It is important that models be developed for real-time simulation
which retain the important features of the original, while significantly reducing the
computational expense.

Lift and drag data are presented for each of five blades at aircraft speeds
up to 300 knots. Total main rotor forces and moments are also provided over this
speed range. This body of data is the basis for comparison with data from alternate
rotor models.

Obtaining these data required developments in both rotorcraft modeling and
computer sciences. In the first discipline it was determined that the model for the
blade element angle of attack should be modified. This modification was used in the
generation of the basis data. Also, the tip-loss model was found to require modifi-
cation when a large number of segmental elements is used, as in the case of a basis
generation. An exploration of this phenomenon leads to an inverted tip-loss
definition.

The computer-science impact is evaluated in the discussion of elemental spacing
criteria; this evaluation influences the method of integrating the elemental forces
and moments along the radius of a rotor blade. It is shown that locations within
segments at which the lift and drag evaluations are made are critical to accuracy
when the quadrature technique is used, and that inconsistent forces and moments may
result. This aspect is examined, and independent of the spacing algorithm, consistent
summation coefficients are developed using the assumption of linear force profiles
between observation points. Another computer-science-related idea which is developed
involves the technique of performing the force and moment evaluations at fixed
azimuthal positions for ease in data comparison. Coupled with this idea is the
observation that the aerodynamic and kinematic portions of the dynamics of a blade
may then be independently analyzed. The idea of "constrained" dynamics allows
aerodynamic parametric changes to be evaluated by essentially holding the kinematic
portions to a prescribed condition. The result is a considerable reduction in
computation required for data collection, and a clear establishment of cause and
effect for analysis.

A very accurate basis for model comparison, which is appropriate for explora-
tions into real-time model efficiencies, has emerged from this study. Many of the
corrections and improvements developed are recommended for immediate applicability
to a simulation model already being used. Although the spacing characteristics of



the equal annuli algorithm are preserved, alternate techniques are recommended for

the use of summation coefficients, and the computation of the tip-loss phenomenon.

II. INTRODUCTION

The RSRA simulation mathematical model was developed by Sikorsky Aircraft for
performance and handling qualities evaluations; it is-also intended "for pilot train-
ing, preflight of test programs, and the evaluation of promising concepts before
their implementation on the flight vehicle" (Houck et al., 1977). The author is
indebted to Houck et al., for the extensive use of their data in this study. It is
assumed that the reader has some familiarity with blade-element mathematical model-
ing, and in particular with the main rotor model described by Houck et al., which is
herein referred to as the "extant model." As supplied to the Langley and Ames
Research Centers, the model represents a computational requirement that can only be
synchronized witt. real time by the use of rather sophisticated computers. Because
of the applicability of the blade-element model, NASA has an interest in its wider
utility (Nackie and Alderete, 1977), for instance, on such modest computers as the
Xerox Sigma 8. The equations and data contained in the real-time model represent a
proprietary derivation from Sikorsky Aircraft's General Helicopter (GENHEL) simula-

tion model. Only the radial dimension is investigated here.

The objective of this study is to establish a rotor-system data base of high
fidelity, using relatively arbitrary inputs that may be used in establishing the
accuracy of alternate mathematical models. It is assumed that these alternate math-
ematical models will use the same physical principles as the extant rotating, blade-
element model, but they will contain various modifications in order to accrue real-
time computational benefits. Because of the magnitude of the computational problem
for blade-element rotor models, their accuracy is highly correlated with their execu-
tion speed. It is maintained that an approximate model may be developed that will
compare favorably with the complete model by capitalizing upon speed advantages. If
these advantages approach the factor of two, the model will then be capable of real-
time synchronization using a modest digital computer such as the Xerox Sigma 8.
Hence, real-time constraints are the motivation for this study, although only accu-
racy is addressed here.

In order to establish a basis, or data base of high fidelity for comparison pur-
poses, it must be assumed that the selected discretized model collapses to the proper
continuum when the number of discrete elements is large (but considering computer
word length, not too large). Unfortunately, the extant RSRA simulation model (Houck
et al., 1977) converges very slowly with segment count, and this behavior prompted
an investigation of the radial spacing convergence properties. Both a low- and high-
speed flight condition were selected, and are presented in figures 1 and 2. Curves
tagged "extant" reveal the convergence difficulties. The rotor-system thrust differ-
ences as functions of the total number of evaluation points are slowly convergent for
a large number of points, and radically divergent for a small number of points.
Hence, in this document we shall go somewhat beyond the mere creation of a data base
and develop certain corrections and improvements that are applicable to the extant
real-time simulation model.

A basis is created which meets the test of invariancy with perturbations in the
number of radial evaluations. This corrected and improved model is not for real-time
use, but for establishing a standard, for comparison purposes, with 20 radial evalua-
tion points. This "basis" produces the rotor-system thrust differences tagged "basis"
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in figures I and 2. The use of 20 evaluation points clearly eliminates discretiza-
tion phenomena and algorithmic distortion from this model.

In contrast to the extant real-time model (Houck et al., 1977), an alternate
model is developed which has better convergence features. This model is also appro-
priate for real-time simulation, and delivers the thrust differences tagged "alter-
nate" in figures 1 and 2. Since real-time constraints usually dictate a small

number of evaluation points, this alternate model is recommended for simulation work.

In the process of creating a data-acquisition algorithm for this analysis, a
technique was discovered for literally taking a snapshot of dynamic va-iables; this

technique is useful in isolating the small differences normally associated with vari-
ous discrete algorithms. This feature has considerably reduced the computational
expense of this and other studies; and it is also useful for the problem of rotor-
craft trimming.

A technique is developed for handling the tip-loss phenomenon by introducing
the concept of a pseudotip for lifting purposes. This technique reduces computa-
tional errors and simplifies the generalization of the integration process to a sum-
mation process.

With respect to a force profile along a blade, the combination of summation and
spacing algorithms are investigated and found to be less than optimum. Improvement
to the summation algorithm motivates the development of a slightly different spacing
algorithm, used primarily for illustrative purposes; it is identified as equal-
annuli midpoint spacing and is shown to better accommodate the quadrature technique.
Without influencing computational expense, summation coefficients are developed for
improvements in accuracy, and for consistency between forces and moments, regardless
of the spacing algorithm. These coefficients feature a linear assumption for elemen-
tal forces between evaluation radii and extrapolation at endpoints.

A five-point model that uses the corrections and improvements developed here
becomes so accurate that it is difficult to justify the use of more segments in
real-time simulation work.

III. DATA ACQUISITION

An extensive mathematical model of the RSRA (Houck et al., 1977) has been pro-
grammed at NASA/Ames Research Center in both a single and a dual computer configura-
tion (Mackie and Alderete, 1977). Although satisfactory real-time synchronization
with this software has not been achieved using modest digital computers, the single
computer formulation is nonetheless readily available for analyses using data gen-
erated in a batch (nonreal-time) mode. When an appropriate driving routine is used,
the subroutine identified as ROTOR may be exercised as a separate entity for investi-
gations into rotor modeling techniques.

In order to create a basis with which to compare alternate model structures,
extensive data were obtained from ROTOR. Using 20 segments per blade, and with modi-
fications that will be developed herein, ROTOR was run with an azimuth advance angle
of 90; the (pseudo) cycle time was varied from 7.094 to 9.851 msec in order to accom-
modate the scheduled rpm constraints (Mach 1 avoidance) as shown in table 1.
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Data acquisition occurred at multiples of eight times the 90 azimuth advance
increment, that is, every 720, in order to avoid data interpolation.

For an arbitrary input control configuration within the capacity of a rotor
system, after blade transients vanish after a few revolutions, the tracking blade

phenomenon is observed in this model such that at any selected azimuth station the
dynamics of a given blade are replicated by the other blades as they arrive at that
station. In this condition of equilibrium, blade-element rotational kinematics at
these orientations may be described with Fourier coefficients. For the RSRA model
at all flight regimes this phenomenon has been observed to occur in something less
than ten complete rotor revolutions, or 400 cycles through the 9*-increment logic.
The orientation given in figure 3 has been selected as a standard for observation
purposes, where the "master blade" is pointing aft.

The problem of obtaining a control profile that is within the capacity of the
rotor system was treated with some seriousness, although it is not necessarily ger-
main to this study. All that is actually required in this analysis is that all the
degrees of freedom be exercised, and this requirement turns out to be a foregone
conclusion with an arbitrary control profile. Nonetheless, a voluminous, unpublished
document I was consulted for data over the entire flight envelope, and a control pro-
file was selected that produced a reasonably smooth transition from point to point in
velocity space (10-knot increments). This profile, shown in figure 4, is sufficient
to acquire a large data base from the ROTOR routine, as modified. Since the rotor as
a system has been isolated in this study, it is not necessary to consider the viabil-
Lty of the selected control profile with respect to body-loop closure. These controls
:ertainly do not constitute trim positions, and the probability or even possibility
that they will actually occur "in flight" is questionable.

It is shown herein how tip-loss effects may be independently considered by util-
ization of the concept of a pseudotip for lifting purposes, and how this concept
eliminates discontinuous end effects from the force profiles as a function of radius.
The integration (summation) of these smoother "force profiles,"

fp = dFp/dr

fT dFT/dr (1)

fR = dFR/dr I

is shown still to present an array of discretization problems, which are compounded
when the aerodynamic moments are also considered.

With two fixed locations along the blade, one being the cuff (beginning of the
effective blade) and the other being the pseudotip (which is shown to be the effec-
tive tip for lifting purposes), the blade-force profiles are presented by using
20 evaluations per blade, and these data are given every 10 knots from 0 to 300 knots;
lift profiles are presented in figure 5, and drag profiles are presented in figure 6.
The quantity fR is a minor term and is not displayed here.

All the data in this document have been created after the implementation of the
angle-of-attack correction given in the next section.

lRobert A. Monteleone, Systems Requirements Handbook for the Rotor Systems
Research Aircraft, Sikorsky Report SER-72039, March 1977. Also available from NASA
management, Contract NASl-13000.
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Angle-of-Attack Error

In the reference formulation (Houck et al., 1977) ay is a four-quadrant angle
(1800 < a .5 1800) that may be given in terms of the dimensional velocity variables
(Vp, VT, vR) by

tan-1 (vT tan OA + vp)icos Y(

vT - vp tan 8A cos2 y(

When the denominator of this expression is positive, layl e 900 and the positive
table lookup argument (aTRANS for lift) is obtained by determining whether or not
the inplane angle of attack given by Jay cos Yj is within a small band about the
positive abscissa:

(lay cos YI (Jay cos YI : 13.50, jayl 900 )

Tlayl (lay cos yj > 13.50, jlaY S 90 0 )

When the denominator of equation (2) is negative, layl > 90* and reverse flow
occurs. The value of aTRANS for lift is then determined by examining a similar
small band about the negative abscissa:

aTRANS = 180 - (1800 - Jayj)Icos yj [(180. - JaYJ)< co s yj 80, layl > goo]

TAN = lal~y [(180 ° "- Jayj)Jcos yj > 80, Jayl > 9001

(4)

Section A-20(c) of the paper by Houck et al., 1977 (the first line of eq. (9) below)
is therefore assumed to be in error, and should appear as

aTRANS = aycos Yj + ay 1800(1 - Icos yJ)
jayl

= 1800 - (1800 - JayJ)lcos yj (5)

which is the same as the first line of equation (4). Since the angle of attack is
also used to compute the switch point between univariant and multivariant lift and
drag functions, this section of the function-generation logic is clarified in
figure 7.

This angle-of-attack error in reverse flow probably has little effect on previ-
ous simulation results, although it has caused considerable delay in this analysis.
Its influence is examined below.

If the equal-annuli spacing algorithm of the extant model is used, the initial
evaluation (inboard) radius is given by (see section VII)

-
2

rl r N + A (6)
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which for five segments is equal to 11.56 ft. The interior portion of the effective
aerodynamic blade, which is therefore treated as lacking in any important functional-
ity, is given by the proportion

P r, - rA (7)BMRrMR - rA

or 21.6% for a five-segment simulation. For the simplified relationship of tangential
velocity,

vT = Qr + 1.6 9 (vknots)sin i (8)

at the worst-case azimuth of 2700, and setting the tangential velocity equal to zero
permits the calculation of the radius at which stall occurs; this calculation is pre-
sented in figure 8. If the computed values of rpm of table I are used, it is seen
that the stall phenomenon begins to occur on the effective aerodynamic surface at
about 85 knots of vehicle velocity. It is also seen that until about 155 knots this
phenomenon is ignored in the extant model since it occurs interior to the initial
evaluation radius (five segments). Hence, even without the angle-of-attack correc-
tion given here, the extant simulation model performs as it was intended in velocity
regions less than 155 knots. Beyond this velocity, or if more than five segments are
used at lower velocities, the errors are dramatic.

As an example of the effect of this error, let us consider the extant (erroneous)
formulation, which is independent of the sign of ay whenever the absolute value of
ay is greater than 900:

aTRANS = cos + - 1800(1 - Icos yI)layl

= Icos Ycyl + 1800(1 - Icos yI) !

= I-ay cos yI + 180'(l - Icos Y;) (9)

The latter step is performed when layl > 90" because cos y is negative when
VT < 0.

If ay = 1790, which is well within the 80 band about the negative abscissa,
then aTRANS should be even closer to 180*. Also, for cos y = 0.9, where its sign
is immaterial, one would anticipate a value for OTRANS somewhere within 1 of the
negative absc!ssa (1800), but what actually occurs from equation (9) is:

nTRANS = I-1(179°)(0.9)1 + 1800(1 - 10.91) I = 143.1 °  (10)

The correct value from equation (5) is 179.1 ° (closer to coincidence with the
airstream), which produces a relatively small lift coefficient (about -0.09). The
value 143.1 ° produces a huge lift coefficient (about -1.1) and has been observed to
cause spectacular N-per-revolution force and moment variations.
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Data Density

The blade orientation of figure 3 and the control profile of figure 4 were used
in order to obtain a reasonable output history; figures 5 and 6 show the diverse
albeit piecewise continuous-curve shapes of the individual-blade lift- and drag-force
profiles. Twenty observations of each lift- and drag-profile curve, as shown in
these figures, appear to be more than heuristically sufficient for continuum emula-
tion, and this fact is reinforced by invariancy under summaLion, as is shown by the
curves tagged "basis" in figures 1 and 2. (The actual summation algorithm, which
produces invariant answers for a reasonable number of segments N, will be seen to be
different if a minimal value of N is required.) However, with the luxury of
20 observations, the summation algorithm becomes relatively inconsequential.

The data displayed in figures 5 and 6 contain the angle-of-attack correction
discussed previously. The observation radii that have been selected for this data
display are uniformly spaced, and although the inboard observation is placed at
the beginning of the aerodynamic surface of the blade, the outboard observation
radius will be seen to have a unique definition in a subsequent section of this
report.

It has previously been ascertained that "reducing blade segments does not appear
to influence the solution to any great extent (Houck and Bowles, 1976). Thus, one
might question the necessity for such a fine mesh of points in this analysis. In
order to answer this question, let us consider the following:

In this study, under all conditions, only a very small azimuth advance angle of

9* is used, thereby effectively eliminating this degree of freedom as an error

source. It has indeed been our experience that "the worst single effect is that of
increasing integration [azimuth] interval" (Houck and Bowles, 1976). It is also a
very complex problem, which is under investigation but not addressed here. Only
improvements to the radial dimension are addressed here, and in this dimension, which
is displayed in figures 5 and 6, the "frequency content" is quite low, provided
that the tip-loss technique of section IV is used (discontinuities are avoided).
Hence, the standard technique of reducing element size until invariant answers ensue
is quite proper, and figures 1 and 2 indicate that the value of 20 evaluation points
is also quite proper.

Balanced and Constrained Dynamics

The two conditions, "balanced dynamics" and "constrained dynamics," are con-
venient for analysis. In the balance condition the flap/lag moments are allowed to
operate as forcing functions for the flap/lag differential equations (normal opera-
tions), and hence produce new flapping and lagging states. In this condition, how-
ever, the slight modification of any parameter or algorithm generally produces myriad
state changes and masks any causal relationship under investigation. For this rea-
son, once the tracking-blade phenomenon is observed, the applicable Fourier coeffi-
cients are captured for use in the constrained condition. Thus, the condition of
"constrained dynamics" means that blade trajectories are constrained to follow those
previously determined (by the 20-segment model) so that force and moment differences
may be isolated to differences in algorithms and segmentation. This process yields
for both the balanced and constrained cases identical dynamics at the specific
azimuth stations selected for observation. (The standard orientation of figure 3 is
always used here.) In this orientation, where the master blade is aft and others

7
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follow sequentially every 21r/B rad in the direction of positive rpm (B is the
number of blades), flap/lag states are the same in both the balanced and constrained

conditions.

It is interesting to note that in the constrained condition only one computa-
tional pass through the rotor equations is necessary in order to determine control
variation responses. Responses to collective (eCUFF) and cyclic controls (Ais, B1S)
may be approximated by use of partial derivatives with respect to low-order Fourier
coefficients. As a subject for future research the static feature of the
"constrained-dynamics" condition suggests an efficient, general trimming algorithm
for rotorcraft since control-variation responses may then be isolated from the sensi-
tive balance process. When such a two-pass trimming algorithm is performed the rela-
tively long transients induced by control variations (due to the low damping in blade
responses) are constrained until approximately correct control signals for trim are
determined; the blades are then released until a balance is obtained. This process
is then repeated until the constrained results become quiescent. It is believed that

this sequence is more efficient than the alternate process of determining total
responses to each control variation since long-period rotor transients interfere with
cause and effect.

IV. TIP LOSS

The tip-loss technique is discussed and arguments are presented for its modifi-
cation based upon consistency, applicability, accuracy, and ability to remain rela-
tively invariant with changes in the number of segments N. Tip loss is presented
early in this discussion because it results in a complete redefinition of integral
limits, which influences other parameters. The resultant concept permits the imple-
mentation of tip loss as a superimposed quantity that may then be ignored throughout
the remainder of this paper.

Where rMR = 31 ft is the total blade length, the radius to the cuff from the
hub (rA = 6.45 ft) is given as the sum of the hinge offset (e = 1.05 ft) and spar
(e' = 5.4 ft):

rA = e + e' = rR( + ') (11)

In terms of dimensional segments Arn or nondimensional segments Ayn, the sum over
all N segments totals the effective blade distance, that is,

N N
F Arn = r =  rMR( - - ') rMR - rA (12)
n-1 n-1

or 24.55 ft. Houck et al. state that for the outboard segment the lift coefficient
is modified for tip loss by use of the relationship

CLY- (I (y- LN) f(aTRANS, Mach) (13)

which is equivalent to an Nth segment radial-distance scale, or interpolation in

the Nth segment via the proportion

8



P i =1 - (1-B )M (14)

where BMR = 0.97. Therefore, the contribution of the Nth (outboard) segment to the

force summation process for all terms that contain the quantity CLy (lift terms) is

scaled, and from the associative law this scaling is shown below to be identical to

a radial-distance scale.

Let us consider the discretized lift-force-profile definition (Houck et al.,

1977) with its radial increment multiplier Arn ,

AFPn 1nI+(15)
2~j PCVyn[(CLYnvTn)/Icos YnI + CDYnvPn]Arn(

Sgn(ayn)fn  (1 n < N)

CLYn IPSgn(ayn)fn  (n = N) (16)

where fn is a tabled function, and Sgn( ) is plus or minus unity. For the purpose

of simplification, we may define

1In
gn = 2 PCVynSgn(ayn)fnvTn/IcOs nI (17)

1 1hn = j pcvYnCDYnVpnJ

so that equations (15) and (16) may be written

AFn = gn Arn + hn Arn (1 5 n < N) (18)

and, including the scale factor P in the applicable term,

AFPN = gN(P ArN) + hN ArN (n = N) (19)

The blade lift force is obtained by the summation over all segments,

N N-i

Fp - E hn Arn + E gn Arn + gN(P ArN) (20)

n-1 n-1

which is the discrete form of the continuous integration process

Fp -f h(r)dr + f g(r)dr (21)
rA rA

Hence, CLy scaling is equivalent to scaling the upper radial limit for terms involv-

ing CLy in the force-profile-integration process. Even if a more complex tip-loss

formulation is assumed, such as linearly decreasing CLY in some radial interval

within the Nth segment, the discrete force summation (with BMR adjustment) is
identical. One cannot, therefore, ascertain the motivation for CLY scaling from
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the provided information (eq. (13)), but the effect is clearly the abrupt vanishing
of CLy-related terms at BMRrMR as in equation (21). The availability of the con-
tinuum formulation (eq. (21)) is important when a large number of segments are con-
sidered, as will be seen. The upper radial limit BMRrMR will be exploited in this
section, but it is important to keep in mind that both CLyN  scaling and ArN scal-
ing are identical techniques for the force summation problem, with the exceptions
that are developed below.

When the number of segments N is allowed to become large, inconsistencies in
the mathematical algorithms become apparent. One such inconsistency in the extant
model involves the summation of moments, where the moment arm to the proportioned
segment is not adjusted. It is not aerodynamically sound to consider CLy as abso-
lutely constant in the outboard segment all the way to the tip rMR, even if it has
been conceived as properV, scaled (although its actual characteristic is an open
question), so such an adjustment to the moment arm is always necessary. Thus, no
physical assumption exists where the moment-summation element in the Nth segment
reduces to the product fN ArNrN of the extant model.

In this paper the discontinuous cutoff of lifting potential at BMRrMR is gen-
eralized and assumed to be the motivation for the formulation (13). This assumption
permits the development of a moment-summation algorithm that is consistent with the
force-summation algorithm without added computational expense. Also, this assumption
will lead to a more general treatment of the force profiles themselves, which will
become quite important when the asymmetrical distribution properties of the equal-
annuli spacing algorithm are considered. Unless the lift coefficient is constant in
the outboard segment, the proportion operation (14) takes liberties with the mean-
value theorem for integrals, and it actually contributes to force as well as moment
errors.

Let us consider the spacing algorithm for the extant model developed in sec-
tion VII. Using the outboard-segment increment ArN,

Ar MR - 1N - 1 (r2 - r2) + r2  (22)

the proportion (14) goes negative when N > 16. This operation is equivalent to sub-
tracting more than the entire force contribution of the outboard segment, and in
moment space such a subtraction cannot be justified even if the force increments are
constants. Indeed, figure 5 demonstrates that there is considerable variation in
the lift-force profiles in this region, and comparison with figure 6 shows that
typical lift values aie an order of magnitude larger than drag values. Since this
unusual subtraction feature occurs just when the quantity N is getting large
enough in an accuracy analysis to replicate continuum results, a large number of
segments N and this technique for tip-loss compensation are inconsistent. Hence,
at least for the establishment of a basis, this technique begs modification. It
should be noticed that the outboard-segment size ArN  in equation (22) is approx-
imately hyperbolic with N (Taylor series),

Ar (I - (rA/rMR) 2 ]rMR/(2N) = 1 (23)

so that P in equation (14) is nearly linear with N.

P a 1 - 0.0627N (24)
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For comparison purposes, we shall consider uniform spacing where the increment
size is independent of n. In this case,

Ar(N) - (rMR - rA)/N (25)

so that the proportion (14) does not go negative until N > 26. However, it still
goes negative with N, and this fact raises questions about a discrete formulation
of continuous phenomena that deteriorates as the number of elements becomes heuristi-
callv sufficient to replicate the continuum. It should be noted that when N > 26,
or with the equal-annuli algorithm when N > 16, the (N - 1)st segment and possibly
other segments should actually enter into the computation, and the Nth segment
should be virtually ignored.

The blade terminus for lifting purposes may be computed from the summation of
the cuff, N - 1 elements, and the scaled outboard element:

N-i
rT = rA + F Arn + PArN = rMRBMR (26)

n 1

This formulation is independent of the spacing algorithm. The radius rT consti-
tutes the terminus of integration for terms involving the lift coefficient CLy, and
the suggested tip-loss technique follows:

Lift f f(r)dr (suggested)
rA

= f rN(- ) f(r)dr + P f
rM R  f(rN)dr (extant)(27)

rA rN(-)

Drag = f rMR g(r)dr (extant)
rA

Jr g(r)dr + J M g(rN1 rN-d1 dr (suggested) (8

rA rT

With the suggested formulation the interval of numerical integration becomes indepen-
dent of the size of the Nth segment, which begins at rN() and ends at rN(+), so
that previous objections are invalidated.

The concept of a pseudoblade is such that it encompasses just the constant-
lifting-surface interval (rA, rT). This concept will be seen to benefit not only
this analysis and the establishment of a basis, but will also benefit the extant
simulation model. The technique uses linear extrapolation on the drag coefficient
beyond rT rather than interpolation (assuming a constant segment value) on the lift
coefficient, and the number N may be as large or small as is desired without math-
ematical inconsistency.
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Advantages are gained with the suggested technique. Figure 5 shows that lift-
force gradients are generally large near the tip, and the suggested technique does
not approximate in this region. The linear extrapolation of drag over the small
interval (rT, rMR) will be shown to be equivalent to superimposing a perturbation;
the magnitude of the lift profile in the region of the outboard segment is gen-
erally an order of magnitude larger than that of the drag profile. Hence, lift space
is inferior to drag space as an approximation medium. A final argument for the
rejection of the extant technique concerns the distortion of continuity, which is
reserved until the end of this section.

In order to appreciate the tip-loss phenomenon in the context of a pseudoblade,
we shall consider the aerodynamic-force differentials in terms of the dimensional
velocities in the nth segment (Houck et al., 1977),

1dFpn - 2 c v Y n [ ( CLY n v Tn ) / Ic ~s Yn 1 + CDYnvPnldrn/

dFTn 2 PCVYn(CDYnVTn - CLYnvPnIcos ynI)drn (29)

dFRn - (VRn/VTn)dFTn

which must be integrated over appropriate radial limits to obtain the blade aerody-
namic forces and moments. For terms involving CLY these limits are the pseudoblade
interval (rA, rT), whereas for terms involving CDy these limits are the total effec-
tive blade interval (rA, rMR), which is identical to the combination (rA, rT) and
(rT, rMR). This latter interval, defined as the drag extrapolation distance, is
given by

rMR- rT - (1 - BMR)rMR = 0.93 ft (30)

which is less than 4% of the total effective blade. This region is always beyond the
outboard evaluation point even if N approaches infinity. During this small inter-
val (rT, rMR), the lift coefficient CLY is zero and the drag coefficient CDy
along with its appropriate kinematic functionality may be extrapolated in both force
and moment space. This procedure is outlined below in terms of superimposed
increments:

AFP(TL) 1 dr

AFT I pcC dr (31)rT

AFR(TL) - 2c YvyvCDy dr (

Also, the moment differentials about the hinge are defined (Houck et al., 1977) as
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dMFA -(r - e)dFp (32)

dMLA - (r - e)dFT I

so that the extrapolated moment increments are given by

AMFA(TL) 2 PC VyVp(r - e)CDy dr

(33)

ALA(TL) c vyvT(r - e)CDy dr

"NA (TL) 2 rT vTD

By assuming linearity between the available combinations of terfm8 VYnvPnCDYn,

VynVTnCDYn, and VynVRnCDYn at the two outboard evaluation radii rN1 and rN, we

can define four constant coefficients:

ArMR- r T rr .I + rF(N-) rN - rN-l ' N 2 (rM rT)

rM - rT[ 1 IAF(N) R rN- T -I (rMR + rT) - rN- 1]

(34)
rMR-rT 2i +r]AMNI rN(rMR + rT) - ( r  + rMRrT - eAF(NI)

= r - rN [ 2

rMRAT( - r + + r2)/3 - rN-(rMR + rT -eAF(N)
AM(N rN - rN_ 1  2

so that by using the coefficients

1

KN -- cvy(N-1)CDY(N-1)AF(N-1)

1
KN - 2 Pcvy(N)CDY(N)AF(N)

(35)
1

LN_ = 2 PcvY(N-1)CDY(N-I)AM(N-1)

LN = 2 Pcvy(N)CDY(N)AM(N)

the indicated integrations of equations (31) and (33) are approximated by:
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AFp(TL) = KNIVp(NI) + KNVP(N)

AFT(TL) = KN1VT(N1) + KNVT(N)

AFR(TL) = KN.lvR(N1) + KNvR(N) (36)

"MFA(TL) = LN-lVP(N1) + LNVP(N)

"LA(TL) = LN1VT(NI) + LNVT(N)

The total aerodynamic forces and moments are thus generated by integrals of
equations (29) over the constant interval (rA, rT) plus the superimposed tip-loss

compensation terms, that is,

frT
Fp . dFp + AFP(TL)

rA

FT = dFT + AFT(TL)
rA

FR ffi dFR + AFR(TL) (37)
rA"A

MFA = f rT (r - e)dFP + AMFA(TL)FA=rA

MLA = f (r - e)dFT + AMLk(TL)

rA

It should be noticed that these "superimposed tip-loss terms" are not related
to the usual definition for tip-loss effects, and their magnitudes are considerably
less than usual values because they utilize drag rather than lift space as an approx-
imation medium. Also, the linear-extrapolation process to obtain these terms does
not influence the computational workload.

In the form of equations (37) any continuity in the force profiles of equa-
tions (1) may be exploited by both the spacing and summation algorithms. Since
these force profiles are exactly the content of figures 5 and 6, reference to these
curves shows that the physics of a rotor blade contribute enough discrete modeling
problems without the arbitrary introduction of the tip-loss discontinuity into
the outboard evaluation value. When equation (13) is applied to these curves as
in the extant model, the outboard evaluation value on both the lift and drag pro-
file usually is distorted to a position that bears no recognizable relationship to
the other points, easily being less than half the magnitude of its adjacent (N - 1)
value, thereby creating a computer-science problem where none should exist. This
discontinuous phenomenon is observed in all flight regimes and with various values
of N. When N - 5, for instance, ArN - 3.12 ft with equal-annuli spacing and the
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Nth segment lift evaluation is distorted to approximately 70% of its "true" or con-
tinuous value. Drag distortion depends upon the relative contribution of the terms
comprising FT.

In the general form of equations (37) the tip-loss phenomenon is superimposed
after the exacting tasks of the spacing and summation algorithms have been accom-
plished. The suppression of distortion in the continuous-derivative information is
extremely important when the integration of equations (37) is approximated by a sum-
mation process. Distortion of derivatives should be avoided when using discrete
integration schemes; if any correlation is assumed between points, which is certainly
an objective of discrete modeling of continuous phenomena and is the primary basis
for more sophisticated integration schemes, this distortion becomes computationally
destructive.

For the 20-segments-per-blade case the summed aerodynamic lift, drag, and radial
forces on each blade (excluding the superimposed tip-loss terms developed here) are
presented in figures 9(a) through 9(c), and the flapping and lagging moments are
given in figures 9(d) and 9(e). These forces, shown for every 10 knots of vehicle
velocity, represent an accurate summation process operating on the specific content
of figures 5 and 6.

When the tip-loss effects are superimposed, the curve shapes of figures 9(a)
through 9(e) are modified to become those of figures 10(a) through 10(e). It is
seen that lift-related terms vary negligibly when this tip-loss technique is used
because of the unique summation limits. Drag variations are small because the
extrapolation distance (eq. (30)) is small.

The quantities involving the multiplier vp (perpendicular velocity) are negli-
gible, as can be seen by comparing the curves of figures 9(a) and 9(d) with those of
figures 10(a) and 10(d), respectively. However, the quantities involving the multi-
plier vT (tangential velocity) can become significant, as can be seen for the
advancing blades by comparing the drag curves of figures 9(b) and 10(b). These
results have been numerically investigated and the quantities AFP(TL) and AMFA(TL)
may be arbitrarily set equal to zero.

Since drag as a numerical quantity is usually smaller than lift and the extrap-
olation distance is a small and constant portion (0.03) of the total radius, CLy is
integrated to a good approximation in this formulation from the cuff to the aerody-
namic terminus for lifting purposes (rT ) with a significant gain in accuracy (as
compared with the extant technique), and CDy is integrated to the blade tip (rMR)
with a slight degradation of accuracy.

Equations (34) through (37) constitute the superimposed tip-loss correction
terms that are assumed throughout the remainder of this paper.

V. SIMPLIFIED SPACING AND SUMMATION

Three spacing/summation algorithms are here examined in order to reveal their
relative-error convergence properties and to investigate their efficiency in the
rotorcraft environment. A simplified model for force profiles is used to demonstrate
that the moment-summation algorithm of the extant model, for example, has slow con-
vergence properties. This algorithm is later expanded to the full model and account-
able error sources are identified in both forces and moments.
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In the extant model the increment distribution is asymmetrical about the indi-
vidual radial evaluation points because of equal-annuli spacing, and the summation
processes are given by the quadrature technique

N N

F = rmR E f(yn)AYn Z f(rn)Arn
n=1 n=i

(38)
N N

M = r2  I
M R  ynf(yn)Ayn = (rn - e)f(rn)Arn

n=1 n=1

where Yn is designated as the center of lift-of the segment. Although the limits
are proper in these expressions as N approaches infinity, it will be shown that
they are first approximations with relatively poor convergence rates when asymmetri-
cal spacing is used.

In order to demonstrate convergence features of summation processes, a simpli-
fied blade-force profile is used; it is developed as follows:

Let us consider a constant, unitary force where y is the nondimensional radial
variable, and neglect spar and offset, which complicate (and modify somewhat) this
analysis. Under these conditions the force-summation problem is to find an efficient,
discrete algorithm that closely approximates the closed-form solutions for the force
and moment:

F =f dy = 1

M= y dy 1

If this simplified model is generalized to a force of order k in the indepen-
dent variable, the continuous solutions are given by

F(yk) = yk dy= k
I0

M(y) yk+l k + 2

0

and the direct summations (38) operating on this simplified force profile produce
relative force and moment errors given by
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N
E[F(yk)] = (k + 1) y Yn AYn - 1

n = 1
9 (39)

N k+

E[M(yk)] = (k + 2) N yk+ 1 1

n=1

Since E[F(yk)] = E[M(yk-1)], the force errors are subsets of the moment errors in
this simplified model (using the summation piocess given), and they need not be
included in this discussion. For this reason the "relative moment error due to a
foro profile of order k" will be used to demonstrate the slow-convergence feature
of th0 extant moment summation algorithm for equal-annuli spacing. First, however,
a very simple spacing scheme is examined for comparison purposes.

Uniform-Segment Algorithm

We shall consider the summation of moments for uniform spacing of segments,
where the force-profile evaluations are made at the midpoints of the segments. The
simplified, nondimensional radial parameters are given by

AY(n) = 1/N

yn= (n- A)(n) (n- )IN (40)

This algorithm will be useful in isolating the error source in the extant model.
The evaluation radii for various numbers of segments are presented in table 2.
(Coincidence of the observation radii for all lift and drag forces and moments is an
assumed feature of a real time model.)

For this algorithm, as the number of evaluation points is decreased, the end-
point evaluation radius moves away from the tip and the density of evaluations near
the tip drops off in equal proportion to the density elsewhere.

For regular polynomial forms, let us consider the relative moment error from
equations (39):

E[M(yk)] k +2 N -( - - 1 (41)
Un Nk+ 2 E n-2n=1

For a force characteristic that is either constant, linear, or quadratic, these
sums are

E[M(y0 )]Un - 0

E[M(yl)]un = -I/4N
2

E[M(y2 )]Un = -1/2N
2

and they are presented in table 3 for up to 10 evaluation radii.
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For polynomial forms this table shows the general underprediction of moments

when the uniform-segment algorithm is used. A priori information is necessary to
use the simplied correction factors. Factors such as these, which imply an assump-
tion abOLt the behavior of the force profiles between observation radii Yn, are
later described in terms of modifying the summation algorithm (38). When observation
spacing is non-uniform, the effect under summation of products such as f(Yn)AYn is
equivalent to a weighting algorithm capable of accommodating an assumed curve profile.
When physical information is available that indicates a tendency under certain condi-
tions for some curves (such as an advancing-blade drag profile) to assume a particu-
lar polynomial form, this motivates the selection of a nonuniform-spacing algorithm,
but does not release the spacing/summation algorithm from the responsibility for
accommodation of either simple or arbitrary curve shapes, which may in fact be the
dominant characteristics.

Equal-Annuli Algorithm

In contrast to the uniform-segment algorithm, the simplified nondimensional
radial parameters for the equal-annuli algorithm (Houck et al., 1977), which are
developed in section VII, are given by

Ayn = (Y4n- 1- 1)/

Yn 1n - JN(42)
The asymmetrical property of these relationships is due co the fact that Yn, the
evaluation radius, is not the midpoint of Ayn, which is variable. For various
numbers of segments the evaluation radii are presented in table 4, which may be com-
pared with table 2.

Unlike the uniform-segment algorithm of the last section, this spacing algo-
rithm shifts the observation radii toward the blade tip. However, it is also true
that the endpoint retreats from the tip with a decreasing number of segments, which

is pertinent to the tip-loss discussion of section IV.

For regular-polynomial forms using the equal-annuli algorithm and the direct
summation (38), the relative moment error for a force profile of order k is:

E[M(yk)I k + 2 n -I(k+ 1) / 2 (F - An -- ) - 1 (3
Eq N (k+2)/2 2n(

By using the Euler-McLaurin Sum-Formula (Selby, 1970), that is, *he series expansion
N-i ,rn N - -1 + 1 11 + .. - 0.207886225 ...

n= 1 3 2 24N 1 9_2 0N3 9216N 5  
- 163840N 7  "

(44)

the relative moment error for a linear-force profile may be evaluated,
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E[M(yl)]Eq = N - 1
n= 1

- 0.623658675 ... - + 64--- 3072N 5 + (45)

By performing an absolute ratio of the relative moment errors the performance
of this algorithm relative to the uniform-segment algorithm with k = 1 is then
found

E[M(yl)]~Eq 1 1 1

= 2.494634 ,' - - + +  (46)EfM(yl)] U 2 160N - + (46)T

which reveals that, for a linear force and five segments, the relative convergence
rate of the moment sum using the equal-annuli algorithm is over five times slower
than the moment sum using the uniform-segment algorithm. For comparison with the
uniform-segment algorithm of table 3, the relative moment errors are presented in
table 5 for the equal-annuli algorithm. Moment errors produced by using the equal-
annuli algorithm thus compare poorly with those produced by using the uniform-segment
algorithm of table 3 when the force profile is relatively simple. The large error
present when the force profile is very simple (e.g., constant) is disturbing because
it indicates that the extant simulation model produces avoidable errors at low
vehicle velocity. This problem is isolated in section VII to an inconsistency
between the selection of the interval Ayn  and its observation radius Yn, and this
problem is compounded when the moment arm Yn is used for moment calculations, as
above.

Equal-Annuli Midpoints

If equal-annuli segment spacing is specified from other considertuoi.. the mid-
point of the interval may optionally be selected as the observation rad7aw. 'hat

1

Yn i  r (n + Vn- i)/ V (47)

which preserves the spacing features of pure equal-annuli spacing as shown in table 6,
although it gives slightly more weight to inboard segments.

For regular polynomial forms using this spacing algorithm and the direct summa-
tion algorithm (38), the relative moment error for a force profile of order k is
given from equations (39),

kk + 2 N
E[M(yk]EM 2k+1N(k+2)/2 L ("n + n- _i)k _ 1 (48)

Compared with the pure equal-annuli algorithm shown in table 5, this algorithm tends
to eliminate the large moment errors that are observed for simple force profiles, as
shown in table 7. The constant column is noteworthy. This table indicates, however,
that when the force profile becomes quadratic or higher order, the gain in accuracy
is lost. This loss of accuracy will be shown in section VI to be a consequence of
the summation algorithm rather than the spacing algorithm.
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The use of the simplified spacing and summation models for illustrative purposes
has been examined, and the following observations may be made about the summation
scheme (38), or quadrature technique:

1. It works well for uniform spacing and produces errors compatible with the
difference between linearity and the actual order of the force profile; that is,

table 3 is quite elementary.

2. It does not work well at all for equal-annuli spacing, although some improve-
ment is noticed if the force profile is high order.

3. It works better for equal-annuli midpoint spacing but seems to deteriorate
too rapidly as the curve order increases.

Momentum or statistical-sampling theories indicate that equal-annuli spacing
should deliver equivalent or less error than uniform spacing, even if the actual
force profiles are simple polynomial forms, and these approaches should all deliver
zero error when the force profile is constant. The discrepancy in the extant model
is explored in section VI.

VI. SUMMATION PROCESSES

The summation processes of Houck et al. (1977), where rn(+) and rn(_) are the
upper and lower nth segment boundaries, are equivalent in dimensional space to

N
F = E f(rn)trn(+) - rn(_)] (49)

n= 1

N
M = (rn - e)f(rn)[rn(+) - rn(-)] (50)

n=1

and have been shown (sec. V) to be consistent with midpoint spacing of the evaluation

radii, that is,

1
rn E [rn(+) + rn()] (51)

for elementary forms of the force profile f(r). However, they are inconsistent with
an asymmetrical-spacing algorithm such as equal annuli, in which the evaluation radii
will be shown to reduce to

rn [r(+) + r2 (52)

in that they cause errors in both the force and moment summations when the force
profiles are elementary (e.g., linear). This point is important since the very
nature of equal-annuli spacing permits the acquisition of a limited amount of data
over significant intervals, that is, reduces the individual segment contributions to
what appears to be elementary forms under summation.
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When the force profile is composed of N perfectly distributed (segment

boundaries coincident with discontinuities) constant steps over each (rn(_), rn(+)),
the summation processes may be examined at the elemental level. For the force-
summation process, the force f(rn) could be evaluated anywhere in the interval
(rn(_) r,1 :5 rn(+)) because it is constant:

frn(+) f(r)dr = f(rn)[rn(+) - rn(_)] (53)

rn(-)

However, the moment-summation process (50) then requires rn to be the midpoint of

the interval,

rn (+ ) (r - e)f(r)dr = [rn(+) - rn(_)lf [rn(+) + rn(_)1 - I f(rn) (54)

rn(-)

because each element of equation (54) is equal to each element of equation (50) if
and only if equation (51) holds. This fact explains the large errors observed in
column one of table 5.

When the force profile is composed of N perfectly distributed (coincident
boundaries and piecewise discontinuities) linear elements, the summation procesL may
again be examined at the elemental level. In this case the force summation process
itself defines rn as the midpoint. By fitting a linear curve between the segment
extremities,

r frn(+) - rn(+) r [r - rni) dr

f(r)dr f[rn(-)] + {f[rn(+)] - f[rn(_)]} r n (+) - rn d)J
n(-) f n()

S [n(+) - rn()]{f[rn(+)] + f[rn()]} (55)

it is shown that for the force to be linear its midpoint value must be the average in
the interval,

f(rn) = {f[rn(+)] + f[rn(_)]} (56)

so that equation (51) is again dictated. Errors begin creeping into the midpoint
algorithm beyond this point of complexity, and this very fact is the motivation for
the selection of a spacing algorithm that tends to concentrate observations in
regions of high gradient activity.

The inconsistency in the equal-annuli algorithm of the extant model will be
shown to be due to the failure of the summation processes (49) and (50) to accommo-
date the spacing of equation (52). It should be noted that equation (51) is con-
sistent with these summation processes and appears to be a viable substitute. For
this substitute spacing algorithm the segment boundaries themselves will be shown in
section VII to have an independent derivation based upon equal-annuli arguments.
However, objections still exist to using equations (49) and (50) even if the mid-
point spacing of equation (51) is used. For instance, since the initial evaluation
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radius r, is quite distant from the cuff rA for both pure equal-annuli and mid-
point spacing, and since high gradient activity near the tip is obvious, then equa-
tions (49) and (50) produce errors even for piecewise linear curves because they fail
to extrapolate exterior to rN (by using f(rN.l)) or interior to rI (by using
f(r2)). (The interior slopes have a canceling action when piecewise linear curves
are used.) In addition, again assuming this linear form, the moment summation (50)
produces rather large errors because the midpoint radial arm is a gross approximation
to the actual integrated functionality; that is,

frn(+) (r - e)f(r)dr * (rn - e)f(rn)[rn(+) - rn(_)] (57)

rn(-)

An integration scheme that incorporates both the extrapolation feature and piecewise
linear functionality is developed in the next section.

Integration of linear segments

In this section a consistent summation algorithm is developed. The force pro-
files are assumed to be linear between observation radii, which are arbitrary,

fn(r) fn + r rn (fn+i - fn) (1 5 n < N) (58)

and (if necessary) linearly extrapolated beyond the evaluation extrema, With these
assumptions, the integrations for the forces and moments over the entire pseudoblade
interval (rA, rT) may be given by

fr 2  _rT N-2 f rn+ l

F = fl(r)dr + fN-i(r)dr + E fn(r)dr (59)
rA rN-1 n-2 rn

frr2  + rT N-2 ,rn+f
M = rf1(r)dr + rfNl(r)dr + J fn(r)dr - eF (60)

rA rN-I n-2 rn

(excluding the superimposed tip-loss effects). The discrete solutions are given by
linear combinations of the force observations fns

N
F E anfn

n 1
(61)

N
M - bnfn

n= 1

when the precomputed coefficients are as follows for N > 3:
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a, (r2 - rA) 2(r 2 - rj)

a2 = [r3 - r, - (r, - rA)2 /(r2 - rj)]

a N- = [rN - rN 2 - (rT - rN)2/(r - rN1) (62)

1

aN = 2 (rT - rN.1 )2 /(rN - rN-l)

1an = Crn+i - I) (2 < n < N -i)

and
1

b= r 2 - rA)2(r 2 + 2 rA)/(r2 - rl) - ea1

13 3

b 2 = - [(r3 - r2 )(r3 + 2r2 )(r2 - rj) + 2(r2 - rA)

6 2 2

- 3r,(r2 - r2)]/(r2 - rj) -ea 2

bN_ = J (rN- - rN_ 2)(rN- 2 + 
2rNl)(rN - rN-l) + 3rN(r2 - r 2 1  (63)

- 2(rT - rl)]/(rN - rNI) - eaN_ 1

bN = 6" (rT rN-l)2(rN-1 + 2rT)/(rN - rN-1) - eaN

bn = -1 (rn+ 1 - rn-l)(rn+ 1 + rn + rn-l) - ean (2 < n < N 1)

Hence, by merely assuming a linear transition of the observed force profiles from
point to point, a consistent set of coefficients are made available for general sum-
mation application by using equations (61); they accommodate any monotonic spacing
algorithm rA S rk < rk+1 S rT (1 S k < N), and they extrapolate internal to the
inboard and external to the outboard observation radii. In addl-ion, for moment
summation a linear force profile is error free.

These general summation coefficients are independent of the spacing algorithm,
and they will be applied to the basis in the next section. Later, they will also be
applied to the "equal-annuli midpoint algorithm" with accuracy improvement over the
extant model.

When N - 3, the'summations in equation (59) vanish, so that:
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1

a2 f [r3 - r, - (r, - rA) 2 /(r2 - rj) - (rT - r3 )
2 /(r 3 - r2)]

2 
2 2b2 = 1 r 2 - rA\ [-3r,(r 2 + rA) + 2(r2 + r2rA + r

6 \r2  r2

+ (r - r) [3r 3 (rT + r2 ) -
2 (r2 + rTr2 + r2 )] - ea 2

Algorithm for the Basis

The basis always utilizes 20 equally spaced observation radii. The initial

evaluation radius is at the cuff r, = rA, and the final evaluation radius is at the

tip for lifting purposes rN = rT. This selection obviates extrapolation except for

the tip-loss correction, and it assures that the best available parameters are used
for the tip-loss extrapolation process. The basis also uses the piecewise linear

summation process of the previous section. The summation coefficients reduce to

I Ar (n = 1)

an = Ar (1 < n < N) (64)

/ Ar (n = N)

6 -r(rA + Ar/3 - e) (n = 1)

bn = Ar(rn - e) (1 < n < N) (65)

1 jAr(rT - Ar/3 -e) (n =N)

where

Ar = (rT - rA)/(N - 1) ! (66)

rn = rA + (n - l)Ar 

(

The reduction of the coefficients to these simple forms, which appear similar to

those of the extant model, is due to the selection of r, to correspond to the cuff,

rN to correspond to the tip for lifting purposes, and uniform segments. When a

nonuniform-spacing algorithm is used this simple form does not occur.

Because of the occasional high rate of curvature change in the outboard portion

of the drag profiles, if it is required that the number of segments be minimal (-5),

this particular subset of the linear-integration algorithm is not recommended. How-
ever, as shown in figures 5 and 6, since the plotting software has conveniently

drawn straight lines through each of the inclusive observation points, it is easily

seen that by using 20 observations (standard for the basis) this linear-integration

algorithm produces negligible differences from the continuum.

Figure 10 has been created by using this 20-segment algorithm and including

the superimposed tip-loss terms as given in section IV. When resolutions of the
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aerodynamic torces and moments are performed and inertial terms are included, the
rotor system delivers body-axes forces and moments as given in figure 11. Fig-
ures 10 and 11 thus constitute the standard for comparison that may be used to estab-

lish the efficiency of alternate models.

Integration of Quadratics

It is maintained that if the spacing algorithm accounts for curvature in the
force profiles via the use of unequal observation "windows," then the summation
algorithm may be proportionally simplified. In particular, for the RSRA data the
linear-segment-integration technique discussed previously is sufficient provided only
that the observation radii are appropriately placed within each window. In order to
demonstrate this fact a higher-order integration process was also examined.

As in the linear-segment-integration case, a set of coefficients may be devel-
oped that give a consistent summation process when the behavior between points is
assumed to be quadratic. Of course, at least three observations are required. If

the observation radii are assumed to be rn, rn+l, and rn+2, the pertinent integrals
of an assumed quadratic function f(r) over the interval (rx, ry) are given by com-
binations of the observed fn, where k = 0 or k = 1:

ry rkf(r)dr fn(rn+2 - rn)rn+ - in) rn+2rn+(r+ I - r+l)

f (r+2 -rn)(rn+ - inn)

rx

1 (rn+2 + rn+,)(rk+ 2 - rk+2 + 1 k+3 _- rk+3

-n1- (rk+ 1 -rk + 1)

(r+2 - rn+)(rn+l - rn) n+2 (y r

k+2(rn+2 +  n)( -k2 + r ---

fn+2 [1 _ (rk+1 rk+1)

+ (rn+2 - rn)(rn+2 - rn+I) + rn+Irn -

1 (rn~ + rn)(rk 2  _ rk 2) + 1 (rk+3 -rk+
3  (67)

k + 2 (n+1 +  n) - k + 3 x

The range of integration or applicability of equation (67) must be decided, and

this process becomes somewhat complicated when N is general. However, for n f 5,
a fairly natural selection seems to be to pivot two quadratics about the observation

at r3. In this case the range of (rx, ry) would be (rA, r3 ) for the first quadratic

and (r3 , rT) for the second. In this case the summation coefficients for use in

equation (61) are:
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[r 1 (r~2  2 ) + 3 3)/3[( r)r-r)
al - 3r2(r3 - rA) - (r3 + r2)(r- (r r -3/[(r3

a2 = r l 3 2 3A  A 3 Ar -rj)(r 3  - (j - r

a -[r3r,(r3 rA) (r3 + rj)(r r) + (r- r)/3]/[(r3 r2)(r2 r)]

a3 = [r2rl(r3 - rA) --I (r2 + rI)Cr) -... (r3 - 3  - rj)Cr3 r2)]

[r5r 4 (rT - r3) - 1 (r 5 + r4)Cr 2 r2) + (rT - r3 )/3 /[(r5 - r 3 )(r 4 - r3 )]

2j C 5 4- r ) r T r 3  + ( T 3 r3)Irl /r 3)

a4 = -[r5r3(rT - r3) -1 2 r2 ) + r4+r 4 r3)]

a5 = [r4r3(rT - r3) - - (r4 + r3)(r2 - r2) + (r - r )/ 3]/[(r-

(68)

and

[b 2 2 - Lr 3 + r2 )(r
3  r 3) + 1 (r4- r4/[r3 - rj)(r 2  rl)j

12 r 3r -rA) 3 3 Ar 4 32 A] /[(r

- ea 1

b 2 = - r3r,(r
2 

- r2) -1 (r3 + rl)r3 -r 3 1 4 r - r2)-r2  rj)]

- ea 2

b3 [i r2r,(r3-rA) -- I (r2 + ri)Cr3 rA) + 1 (r3- rA) /[(r3 - rj)(r 3 - r2)]
[i3 r~r(r' ) 3 / (r2  rl)

S 2 r5  (r 3 ) + 1 (.r 4 r4) /[(r5  r 3)(r 4  r 3)]

- ea3

b -[ r5r3 (r - r ) 1 (r. + r3) 3 r3) + ( -r r- r4)(r (- r)]

- ea4

b5 r4r 3 (rT -r 3) - ( r4 + r3)CrT r3) +! (r r3 4 [(5 3.., 4)

- ea 5

(69)

Interestingly enough, the use of these coefficients produces negligible improve-
ment over the use of the linear coefficients given in equations (62) and (63) when
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the "equal-annuli midpoints" algorithm (developed in sec. VII) is used to select the
observation radii. Hence, higher-order summation approximations such as this are
superfluous when the spacing algorithm itself accounts for the curvature of the
force profiles.

VII. EQUAL-ANNULI DERIVATION

Since a more general and accurate summation process has II ' ed, we now
turn our attention to the spacing algorithm. We shall consider ..e : zirn.-i advance
angle dqS that occurs during some time interval such that the di tail iiat a point
on the blade at the observation radius rn  travels is

dSn = rn d*

and the area swept out from the hub to this point is

dAn = I rn dSn = r2 dP

The equal-annuli concept is that the area swept out by an adjacent observation radius

=1 1 2~
dAn+1 ' - rn+1 dSn+l =- r2 d*

is used to define the differential area

1 2 2
AA= dAn+. - dAn = i (r.+l - rn)d* (70)

which is independent of n. Hence, the difference in the squares of radii is
constant,

2 2
K = rn+l - (71)

which is another way of saying that the density of observations increases hyperboli-
cally with the midpoints between observations, that is,

-K

rn+1 - rn = 1(72)
(r n+1 + rn )

By induction, equation (71) may be written in terms of the initial radius rl.

rn (n - I)K + r2 (73)

The constant K is determined by dividing the total area swept out by the
effective blade (rT  used here rather than rMR) into N equal areas,

(r2 _ r2)d* = NK d* (74)T A
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so that

n -I (r -r +r, (75)

The initial observation radius is obtained by noting that the area from rA  to r,
is half the area from r, to r2 , which is equivalent to

2 1 2 1 (r - r2) (76)

and substituting this into equation (75) with n = 2 yields

r2 rA+ (r - rA)/(2N) (77)

so that (when rMR is substituted for rT) the blade observation radii are given by
the reference result (Houck et al., 1977),

r, = [r2 + (r2 - r2)/(2N)]1/2 N
2 2 / 2 (78)

= [rn_ + (r - ir)N] (1 < n : N)

which by induction may be written for all n:

rn = A + (r - r+)(n- -)IN] (79)

As a spacing algorithm this one appears satisfactory because it tends to appre-
ciate the occasional curvature change in drag forces with radius or at least recog-
nize the linear radial factor required for the computation of aerodynamic moments.
A summation algorithm, however, should recognize the convergence problem associated
with the approximation processes,

frT N

F = f f(r)dr L f(rn)an
r A  n= 1 

80rTN (80 )
M = (r - e)f(r)dr E f(rn)bn

rA n=1

and, therefore, the coefficients (an, bn) should be determined from assumptions about
the behavior of f(r) between observation radii rather than be averaged over seg-
ments that are artifacts in the development of the spacing algorithm. This process
is discussed in the next section.

Equal-Annuli and Quadratures

In this section the segment spacing for the equal-annuli algorithm is developed.
It is noted that the selection of observation radii within these segments involves
other considerations when the quadrature technique is used in the derivation.
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Let us consider the segment bounded by rn(+) on its exterior and rn() on its
interior. The distances that these extremity positions travel during some azimuth
advance angle dp are given by

dSn(+) = rn(+)dJ

dSn(_) = rn(_)d

so that the total area swept out by the segment is

AA = [r 2(+) r(_)]d (81)

When these segment areas are independent of n we have

rn(+) rn(_ )  (82)

so that by using the contiguous relationships

rn(+) = rn+l(-)

(83)
rn(_) = rn 1 l(+))

the indices may be made compatible:

2 2K rn(+) - nl(+)

(84)
2 r2rn+l() - n(-)

The extremities of the segment are then found by induction,

rn(+) nK + L

(85)
r(2 (n - 1)K + Lrn(-)

where the constants are determined from the boundaries

r (-) = rA } 86

(86)
rN(+) f rT

and the solutions are given by:

rn(+) = [r2 + (r - r2)n/NI1/2 I

2 2 [_ +)(n - ) NI 1/2J (87)rn(_ ) - 1)I+N]T r

The segment length may be expressed by
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Arn- rn(+) - rn

but it has not been relevant to this development since only the differences in the
squares of radii have been used. Furthermore, one may define a radius such as in
the extant algorithm (eq. (79)), but it has not been relevant to this development
either. A possible reason for its inclusion in the algorithm for the extant model
is as follows: If the assumption is made that the force between points is quadratic
in radius, specifically at the extremities, that is,

n(+= Cn(+)

fn(-) 
= Crn2()

then another assumption is necessary, which is inconsistent with the first assump-
tion: that the average of the functional values at the segment extrema is equal to
the observation value, that is,

fn = 2 [fn(+) + fn(-)] = C[r2(+) + r2(-)] (88)

so that, by applying the original assumption to the evaluation point itself,

2
fn = Crn (89)

the simultaneous solution of equations (88) and (89) produces the formulation of the
extant model, which is equivalent to equation (79):

rn r 1 (+) + r2(_)] (90)

But if f(r) is indeed quadratic as in equation (89), then the correct integration

process is given by
frn+ f~~r cfrn(+) 2 i

rn(+) f(r)dr = C r 2 dr = C[rn(+) - rn(_)][rn(+) + rn(+)rn(_) + r21

rn(- )  rn(-)

(91)

so that the correct quadrature method of integrating the forces within the interval
is

f(rn)[rn(+) - rn(_)] Crn[rn(+) -

1 C[rn(+) - rn(-)][rn(+) + rn(+)rn(-) + r2(-] (92)

This expression results in an observation-radius definition in terms of the segment
extremities, which is quite different from the reference spacing:

rn = i [rn(+) + rn(+)rn(_) + r2 (93)
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Thus, this particular segment-oriented derivation of the equal-annuli algorithm
isolates the observed mathematical inconsistency. EquaZ-annuli spacing of the ob-
servation radii is not compatible with the quadrature technique. However, as given
in equation (79), equal annuli spacing may be used with the summation coefficients
of Section VI. Indeed, this combination is recommended for real-time simulation
programs, where a minimal number of radial observations are required.

Equal-Annuli Midpoints

The combination of the quadrature technique and equal-annuli spacing tends to
improve results when the force profile is a high-order polynomial in radius. How-
ever, this feature is rarely of benefit, 2 while its destructive tendencies are much
more common. In order to illustrate this process, an alternate spacing algorithm
is introduced, which is more compatible with the quadrature technique because it
uses the midpoints of the artificial segments, given in equations (87):

r = -I[ (r2 - r2) + r2 + n- (r2 - r2) + r2] (94)n 2 rVI T A A N T A A

For a quadratic force profile, this spacing algorithm is shown in appendix A to
deliver half as much error as equal-annuli spacing, when the quadrature technique
is used.

The spacing algorithm of equation (94) is also of interest when the suggested
summation coefficients (62) and (63) are used,

N
F = a nf(r n )

n=l
N (95)

N
M = L b f(rn )

n=l n n

In appendix B this process is compared to the original combination of equal-annuli
spacing and quadrature technique. The use of summation coefficients is shown to
have a distinct advantage for arbitrary curve shapes.

In combination with the tip-loss technique of equation (37), the inconsisten-
cies in the radial computations are eliminated for both real-time simulation and
for continuuo emulation, provided the equal-annuli spacing algorithm of equation
(79) or the alternate spacing algorithm of equation (94) is used, along with the
summation coefficients. No real-time computational penalty accrues. Of particular
importance to real-time simulation (using a minimal number of radial observations)
are the features of linearity between observation radii, extrapolation internal to
the inboard observation radius and external to the outboard observation radius,
superimposed tip loss that does not influence the continuity of the functionals to
be summed, a consistent solution for forces and moments, and no extra real-time
computational expense.

2Only the drag profiles for advancing blades during high-speed flight benefit
(e.g., blade 2 in fig. 6(ee)).
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VIII. ERROR COMPARISON

The errors from both the extant and alternate algorithms are examined here by
using 5-segment models and comparing them with the 20-segment basis. In order to
fully appreciate this comparison the "constrained and balanced" operations are

necessary.

In exercising the extant model, only the angle-of-attack correction of sec-
tion III was implemented.

In figure 12 the total-body-axis forces and moments for the extant model are
presented in the constrained condition. Thus, the blade trajectories have been con-
strained to the same trajectories as the 20-segment basis case. The forces and
moments of the basis of figure 11 (the basis always uses 20 segments) are also
repeated on these graphs for comparison purposes. The differences are due to the
decreased number of segments, slow summation convergence, the tip-loss computation
technique, and equal-annuli spacing.

Since figure 12 has been created in the constrained condition so that inertial
terms are invariant, differences are entirely caused by the computation of aerody-
namic terms. These aerodynamic errors are presented in figure 13. Among items that
should be noticed are the force and moment standoff differences at low vehicle veloc-
ity, the deterioration (see blade 5 in fig. 13(b)) of reverse-flow computation, and
error variation when the blade encounters drag divergence (see blade 2 in fig. 13(a)).
From the data set this latter phenomenon is identified by variations in the drag

coefficient due to Mach number variation without regard to angle-of-attack variation.

When the blade states are allowed to interact with their flap/lag differential
equations, the balanced condition is achieved. Figure 14 shows the extant and basis
rotor-system total-body-axes forces and moments. The new spatial orientation of the
rotor disc produces differcnces, some of which involve inertial terms. Although the
forces of figures 12(a) and 14(a) do not experience much variation, an interesting
phenomenon occurs in moiaent space, especially in yawing moment; it is seen in com-
paring the value .f RM, between figures 12(b) and 14(b). In order to explain this
phenomenon figure 15 is presented, which gives the rotor-torque differences. This
figure shows that the torque difference under the constrained condition is minimal;
however, when the flapping- and lagging-moment variations of figures 13(d) and 13(e)
are allowed to interact with the differential equations, new blade states are created
that minimally influence the force values but cause a rather large variation in total
rotor-system torque. This effect is shown in the following section to be attribu-

table to one specific inertial term.

The alternate simulation model creates errors that are more consistent with its
assumptions, and usually much less than those of the extant model. Individual-blade

aerodynamic force and moment errors for this five-segment model are given in fig-

ure 16 for comparisui with figure 13. The total system outputs in the constrained

3At low vehicle velocity the unusually large displacement of the initial evalua-

tion radius for the extant algorithm delivers an error in perpendicular force of
approximately 100 lb per blade. Increasing the number of segments from S to 10 only
reduces this error to approximately 70 lb per blade. The extrapolation feature of

the alternate model eliminates this error.
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condition are given in figure 17 for comparison with the extant-model outputs shown
in figure 12. The total system outputs in the balanced condition are given in fig-
ure 18 for comparison with the extant-model outputs shown in figure 14. As might
be expected, the total torque error is much improved. This error, given in figure 19
for both the balanced and constrained conditions, may be directly compared with the
error for the extant model shown in figure 15; a further examination of the torque
error is given in the next section.

Figures I and 2 have been presented to demonstrate thrust variations with seg-
ment number. Only on these two graphs does the "basis" contain less than 20 ele-
ments. The improvement in thrust obtained by using the alternate algorithm rather
than the extant algorithm is demonstrated in these figures for vehicle velocities of
10 and 250 knots. Specifically, for a small number of segments the alternate algo-
rithm is at least twice as accurate, and for a larger number N the convergence is
faster. Invariancy with N is displayed by the basis in the region of N = 20.
Another feature that is indicated by these graphs is that lift forces are improved
with uniform spacing (basis). Because of their nearly arbitrary variations this
improvement with uniform spacing is most probably true in general, but this fact is
not true for drag forces. These drag forces exhibit distinct polynomial forms,
especially at significant velocities for advancing blades, and uniform spacing fails
to accommodate this feature when the number of segments is small. Indeed, high-
order polynomial drag characteristics are the justification for equal-annuli spacing,
and this feature has been preserved in the development of the alternate algorithm.
It should be noted that this alternate algorithm is also consistent with lower-order
curves, which are dominant in figures 5 and 6.

Error Propagation

The extant model is here used to trace an error from its source in the con-
strained condition to the balanced condition. It will be shown tiat the major dif-
ferences in balanced and constrained conditions are simply duo to an inertial term.
(This fact supports the contention that a major contribution to rotorcraft trimming
will result from the "constrained" concept.) In the previous section the importance
of accurate summation along the blade was illustrated by a variation in torque
(fig. 15). Although the aerodynamic force outputs during the balanced condition vary
only slightly from the outputs during the constrained condition (as can be seen by
comparing figs. 12(a) and 14(a)), the slight reorientation of the rotor disc, caused
by the inaccurate moment summation process, produces torque errors. These errors are
due primarily to the contribution of a single inertial term, as shown below.

The total rotcr system yawing moment NMR is nearly identical to the torque Q.
Slight differences are attributable to the moment arm and to the shaft-to-body-axis
transformation, which is almost an identity matrix. hence for B blades,

B
NMR = Q - (MLDi cos 0i + eFXAi + eFXIi) (96)

i=1

For the purpose of a perturbation analysis, we consider a portion of the inertial
term,

33

k . .. . . . . . .. .



B B
NMR -e L FXIi + ... = -e L Mb cos $i sin 61(r s - )2 +

if= i=1

B_ eMb Q2 1 6i + .. -eBMb? 2aOL/57.3 + ... (97)

i=1

where the principal lagging Fourier coefficient is defined (in deg) as

B57.3

aOL B 57. 6 i (98)

Thus, if the torque error is due primarily to a reorientation of the lagging angles,
it may be reconstructed by considering only the contribution

A% = -eBMbQ2 AaOL/5 7.3 (99)

where rpm follows the computed schedule of table 1.

The lagging coefficient aOL is presented in figure 20 from the basis. Also

appearing on this graph is the difference in lagging coefficient AaOL observed from
the extant simulation model with balanced conditions for five segments. Using equa-
tion (99), with the parameters e = 1.05, Mb = 91, B = 5, and rpm as in table 1,
figure 21 is produced, showing very little deviation from the torque-error history

of figure 15. Hence, inaccuracies in the computation of the lagging moment during

the constrained condition are seen in the balanced condition to contribute directly
to the yawing-moment error, as should be expected.

From this comparison an important fact is revealed: In order to obtain accurate
rotor system outputs the moment summations are at least as important as the force
summations. The amplification due to the radial moment arm means that any effort
spent in replicating the true force profiles is effort well spent.

The lagging-moment error, which directly influences the lag states through the

forcing functions of the differential equations (Houck et al., 1977), influences
aOL via equation (98), and thus contributes to the torque error via equation (99).
It has been shown here that this logic path is the one that produces the torque error
for the extant simulation, which manifests itself in the total-yawing-moment errors

given in figure 14(b).

IX. CONCLUSIONS

An a:,gle-of-attack correction for reverse-flow computation has been developed by
using symmetry arguments, and this correction has been demonstrated to influence

simulation results at vehicle speeds in excess of 155 knots.

The balanced/constrained dynamics concept has been developed for rotor systems

and shown to be a valuable tool for comparing different formulations. It should also
lead to the development of a generalized rotorcraft trimming process that promises to
be computationally efficient.
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An alternate tip-loss model has been developed that simplifies the integration
process by using a minor perturbation that is superimposed upon integrals of contin-
uous derivatives. The pseudoblade concept has been demonstrated to exploit the rela-
tive magnitudes of lift and drag forces for the approximation process.

The slow convergence properties of the radial summation scheme using quadratures
has been noted, and the propagation of errors has been illustrated. The summation
scheme has been improved with a set of coefficients that are applicable to various
spacing algorithms; they are demonstrated herein by using the alternate algorithm
that features equal-annuli midpoints. Equal-annuli spacing is recommended for real-
time use with these summation coefficients. Output improvements are shown to be
especially noteworthy during low vehicle velocity. A general improvement in the
computation of lift-related quantities has been demonstrated, although at higher
flight velocities some deterioration has been observed in drag-related quantities.
Since lift quantities are usually an order of magnitude greater than drag quantities,

the total-rotor-system outputs are improved.

The advancing-blade drag profiles are shown to occasionally exhibit a high-order
radial polynomial behavior that is best accommodated by a biased spacing algorithm
such as in the extant model, but this advantage is deleterious to the convergence of
other quantities, including the retreating-blade drag profiles. Further research is
recommended in the area of summation coefficients that recognize both the character-
istic differences in lift and drag and the azimuth-dependency problem.

A data base of high fidelity has been created by using 20 uniform segments.
This data base has been graphically illustrated and exists as a basis for additional
model development activities. This basis exhibits neither standoff errors nor eval-
uation weighting usually associated with real-time algorithms that require a minimal
number of evaluations; it is virtually invariant with the number of segments used.
For a large number of segments, the alternate algorithm converges to the basis.
When tip loss is reformulated as developed herein, the extant algorithm also con-
verges to the basis, but more slowly.

Ames Research Center
National Aeronautics and Space Administration

and
Aeromechanics Laboratory

AVRADCOM Research and Technology Laboratories
Moffett Field, Calif. 94035, January 27, 1982
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APPENDIX A

QUADRATIC COMPARISON

For a force profile that is quadratic in radius, equal-annuli midpoint spacing
produces half the error of pure equal-annuli spacing, even when the summation algo-
rithm for the extant model is used. This fact is proved below.

If the force profile is assumed to be quadratic in radius

f(r) - r2  (Al)

then the closed-form solution is

prT 1 ( -r)(2

FC = J r2 dr = (r r3) W)
rA

Defining

b, = 1 (r2 -
N =(A3)

b2= r

the segment extremities are given by equations (87) as

rn(+) = (nbl + b2 )I1/2 (A)

nn(_)= [(n - l)bI + b21
/ 2

and the force-summation process for the extant model is

N
F = E f(rn)[rn(+) - rnC-)] (A5)

n= i

The two candidates for f(rn) are the pure equal-annuli assumption,

2

f(rn) = (rn)2 = [rn(+) + rn(_) = - [rn(+) + rn(_)I (A6)

and the equal-annuli midpoint assumption,

f(rn) = (rn)2 = [rn(+) + rn( ) ]  = - [rn(+) + rn(_)] 2  (A)

For the pure equal-annuli algorithm the force error is given by
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N

EEq = F [rn2(+) + r2(_)][rn(+) - rn(_)] - FC
n= 1

N

2 ((2n - 1)b I + 2b2 ][vnb + b2 - .(n - l)bj + b2 -F Cn=
1

S11N-i
[(2N - l)bj + 2b2]rT - (b, + 2 b2)rA - b I  /nbl + b- FC

n=1

(r2 - r2)(rT + rA 1 N-I'b 1 +bS2 (r _3 - T A
2 A 4 2 -- 4N - 2 bI n  + b 2 (A8)

n= 1l

and for the equal-annuli midpoint algorithm the force error is

N
EEM = 4 [rn(+) + rn(-)]2[rn(+) - rn(-)] - FC

n= 1

N 2 2
4 [rn(+) - rn(_)J[rn(+) + rn(_ )] - FC

n= 1

= b (/I + b 2 + bI2+2 E nbl + b2 - FC
4 bj + b 2 + 2n=1lF

(r2- r2)(rT + rA) 1 N-i
- (r- rA) + 4Nbn /nb 1 +b 2  (A9)= 34N (A9)

n= 1

Hence,

IEEMI 2 IEEqI (AlO)
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APPENDIX B

NUMERICAL EXAMPLE

With five segments, the resultant forces are here compared by using the sug-
gested, alternate algorithm (equal-annuli midpoints) and the extant algorithm (pure
equal-annuli spacing). The applicable summation algorithms are different, as noted
in the text.

For five segments the segment extremities (the same for both algorithms) are
given from equations (87) as

rl(_) = rA = 6.45

ri(+) = r2 (-) - 14.632942

r2(+ ) = r 3(-) = 19.663252 (Bl)
r3(+ ) = r4(-) 

= 23.646648

r4(+) = r5 (-) = 27.049666

r5 (+) = rT = 30.07

From equation (94), for equal-annuli midpoint spacing the observation radii are

r, = 10.541471

r2 = 17.148097

r3 = 21.148097 (B2)

r4 = 25.34815

r5 = 28.559833

which enable us to compute the force coefficients from equations (62):

a, = 8.6617041

a2 = 4.2898194

a 3 = 4.10003 (B3)

a4 = 3.0973926

a5 = 3.4710539

Thus, for equal-annuli midpoint spacing with five segments the force-summation algo-
rithm is given by:
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FEM 8.6617041f(10.541471) + 4.2898194f(17.148097) + 4.10003f(21.65495)

+ 3.0973926f(25.348157) + 3.4710539f(28.559833) (B4)

For the pure equal-annuli algorithm, as in the extant model, the observation
radii are given from equation (79) as

ri = 11.307641

r2 = 17.331567

r3 = 21.746349 (B5)

r 4 = 25.4052

r5 = 28.599732

so that in accordance with equation (49), using the differences [rn(+) - rn()], the
extant model with five segments produces the force-summation algorithm:

FEq = 8.182942f(11.307641) + 5.03031f(17.331567) + 3.983396f(21.746349)

+ 3.4031858f(25.4052) + 3.0203342f(28.599732) (B6)

For a force of order k in radius the correct integration process is

rkfrT  i dr (rk+1 - rk+ 1) (B7)
rA

and, therefore, the relative force errors in these two algorithms are given by:

EEM : FC_

(B8)

EEq 
F
C

These relative errors are plotted in figure 22, and they demonstrate why the alter-
nate algorithm delivers less error for segment curve characteristics up to at least
cubic order (k - 3) in radius.
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TABLE l.- COMPUTED rpm WITH VEHICLE VELOCITY

Vehicle velocity, knots rpm, rad/sec

0-180 22.1416
190 21.9424
200 21.3972
210 20.8520
220 20.3069
230 19.7617
240 19.2165
250 18.6714
260 18.1262
270 17.5811
280 17.0359
290 16.4907
300 15.9456

TABLE 2.- UNIFORM-SEGMENT EVALUATION RADII

Evaluation radii for

Evaluation point, n number of evaluation points, N

3 5 7 10

1 0.1667 0.1 0.0714 0.05
2 .5000 .3 .2143 .15
3 .8333 .5 .3571 .25
4 .7 .5000 .35
5 .9 .6429 .45
6 .7857 .55
7 .9286 .65
8 .75
9 .85

10 .95

TABLE 3.- UNIFORM-SEGMENT ALGORITHM RELATIVE ERRORS

Relative error in blade moment
Number of evaluation points, N if the force profile is:

Constant Linear Quadratic

1 0 -0.2500 -0.5000
2 0 -.0625 -.1250

3 0 -.0278 -.0556
4 0 -.0156 -.0312
5 0 -.0100 -.0200
6 0 -.0069 -.0138
7 0 -.0051 -.0102
8 0 -.0039 -.0078
9 0 -.0031 -.0062

10 0 -.0025 -.0050
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TABLE 4.- EQUAL-ANNULI EVALUATION RADII

Evaluation radii for
Evaluation point, n number of evaluation points, N

3 5] 7 10

1 0.4082 0.3162 0.2673 0.2236
2 .7071 .5477 .4629 .3873
3 .9129 .7071 .5976 .5000
4 .8367 .7071 .5916
5 .9478 .8018 .6708
6 .8864 .7416
7 .9636 .8062
8 .8660
9 .9220

10 .9747

TABLE 5.- EQUAL-ANNULI ALGORITHM RELATIVE ERRORS

Relative error in blade moment
Number of evaluation points, N if the force profile is:

Constant Linear Quadratic

1 0.4142 0.5000 0.4142
2 .2144 .1893 .1145
3 .1446 .1061 .0537
4 .1091 .0702 .0313
5 .0876 .0508 .0206
6 .0732 .0390 .0146
7 .0628 .0311 .0109
8 .0550 .0256 .0085
9 .0490 .0216 .0068

10 .0441 .0185 .0056

TABLE 6.- EQUAL-ANNULI MIDPOINT FVALUATION RADII

Evaluation radii for
Evaluation point, n number of evaluation points, N1 3 0.231.19 10

1 0.2887 0.2236 0.1890 0.1581
2 .6969 .5398 .4562 .3817
3 .9082 .7035 .5946 .4975
4 .8345 .7053 .5901
5 .9472 .8005 .6698
6 .8855 .7409
7 .9629 .8056
8 .8655
9 .9216

10 .9743
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TABLE 7.- EQUAL-ANNULI MIDPOINT ALGORITHM RELATIVE ERRORS

Relative error in blade moment
Number of evaluation points, N if the force profile is:

Constant Linear Quadratic

1 0 -0.2500 -0.5000
2 0 -.0947 -.1464
3 0 -.0531 -.0707
4 0 -.0351 -.0420
5 0 -.0254 -.0280
6 0 -.0195 -.0201
7 0 -.0156 -.0151
8 0 -.0128 -.0119
9 0 -.0108 -.0095

10 0 -.0092 -.0079
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Figure 1.- Thrust differences, v = 10 knots.
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Figure 2.- Thrust differences, v = 250 knots.
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Figure 9.- Total blade aerodynamic forces and moments excluding tip loss.
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Figure 9.- Concluded.
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Figure 10.- Total blade aerodynamic forces and moments including tip loss.
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Figure 10.- Concluded.
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Figure 11.- Basis, total rotor outputs, body axis system.
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Figure 12.- Total rotor outputs of extant model, constrained condition.
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Figure 13.- Aerodynamic errors of extant model, constrained condition,
five segments.
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Figure 13.- Concluded.
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Figure 14.- Total rotor outputs of extant model, balanced condition.
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FOR COMPARISON WITH FIGURES 19 AND 21
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Figure 15.- Torque comparison of extant model with five segments.
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Figure 16.- Aerodynamic errors of alternate model, constrained condition,

five segments.
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Figure 16.- Concluded.
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Figure 17.- Total rotor outputs of alternate model, constrained condition.
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Figure 18.- Total rotor outputs of alternate model, balanced condition.
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FOR COMPARISON WITH FIGURE 15
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Figure 19.- Torque comparison of alternate model with five evaluations.
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Figure 20.- Lagging coefficient variation.
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Figure 21.- Computed torque error.
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Figure 22.- Algorithmic relative errors for polynomial-force profile.
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